BBAMEM 74794

Characterization of Na⁺-dependent Mg²⁺ efflux from Mg²⁺-loaded rat erythrocytes

Theodor Günther, Jürgen Vormann and Vera Höllriegl

Institute of Molecular Biology and Biochemistry, Free University of Berlin, Berlin (Germany)

(Received 28 September 1989)

Key words: Magnesium ion efflux; Sodium/magnesium antiport; (Rat erythrocyte)

Na $^+$ -dependent Mg $^{2+}$ efflux from Mg $^{2+}$ -loaded rat erythrocytes was determined from the increase of extracellular Mg $^{2+}$ concentration or decrease of intracellular Mg $^{2+}$ content, as measured by means of atomic absorption spectrophotometry. Mg $^{2+}$ efflux was specifically combined with the uptake of Na $^+$ at a stoichiometric ratio of 2Na $^+$: 1Mg $^{2+}$, indicating electroneutral Na $^+$ /Mg $^{2+}$ antiport. Na $^+$ /Mg $^{2+}$ antiport depended on intracellular ATP and was inhibited by amiloride and quinidine, but was insensitive to strophanthin. Net Mg $^{2+}$ efflux was only occurring at increased concentration of intracellular Mg $^{2+}$ ([Mg $^{2+}$]_i), and stopped when the physiological Mg $^{2+}$ content was reached. Intracellular Mg $^{2+}$ acted cooperatively with a Hill coefficient of 2.4, which may indicate gating of Na $^+$ /Mg $^{2+}$ antiport at increased [Mg $^{2+}$]_i. At increased intracellular Na $^+$ concentration, Na $^+$ competed with intracellular Mg $^{2+}$ for Mg $^{2+}$ efflux and Na $^+$ could leave the rat erythrocyte via this transport system. Na $^+$ /Mg $^{2+}$ antiport was working asymmetrically with respect to extra- and intracellular Na $^+$ and Mg $^{2+}$, and did not perform net Mg $^{2+}$ uptake.

Introduction

In preceding experiments, we investigated net Mg²⁺ efflux from Mg²⁺-loaded human, chicken and rat erythrocytes [1]. In all types of erythrocytes, there was an Na⁺-dependent and Na⁺-independent Mg²⁺ efflux. However, both kinds of Mg²⁺ efflux were differently expressed in these types of erythrocytes. In rat erythrocytes, Na⁺-dependent net Mg²⁺ efflux exhibited the highest rate amounting to 8.9 mmol/l cells per 30 min. Thus, Na⁺-dependent net Mg²⁺ efflux from rat erythrocytes was 5.5-times higher than from chicken erythrocytes and 55-times higher than from human erythrocytes. The high rate of Na⁺-dependent net Mg²⁺ efflux offers the possibility to investigate more exactly the properties of Na⁺-dependent net Mg²⁺ efflux from rat than human erythrocytes.

Abbreviations: TCA, trichloroacetic acid; PCMBS, p-chloromercuribenzenesulfonate; [Na⁺]_i, [Na⁺]₀, intracellular, extracellular Na⁺ concentration; [Mg²⁺]_i, [Mg²⁺]₀, intracellular, extracellular Mg²⁺ concentration; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.

Correspondence: T. Günther, Institute of Molecular Biology and Biochemistry, Free University of Berlin, Arnimallee 22, D-1000 Berlin 33, F.R.G.

Materials and Methods

Cell-loading

Blood was taken from an esthetized rats (50 mg/kg Nembutal sc.) by heart puncture with a heparinized syringe and centrifuged at $1000 \times g$ for 10 min. The plasma and buffy coat were aspirated and the red cells were washed twice with 150 mM KCl.

The cells were loaded with Mg²⁺ by incubating a 10% cell suspension for 30 min at 37°C in KCl medium (140 mM KCl, 50 mM sucrose, 5 mM glucose, 30 mM Hepes/Tris, pH 7.4) with the addition of 12 mM MgCl₂ and 6 μ M A23187 dissolved in dimethyl sulfoxide.

For Na⁺-loading of the cells, the cells were incubated with 30 μ g/ml nystatin in the presence of 10 mM (Na⁺-unloaded) or 150 mM Na⁺ (Na⁺-loaded) in the loading medium (substitution of KCl in the medium by NaCl, as indicated) for 20 min at 37°C, followed by incubation at 0°C for 20 min. For removal of A23187 or nystatin, the cells were incubated four times in loading media plus 1% bovine serum albumin for 10 min at 37°C. The loading media were removed by washing the cells twice with NaCl medium (substitution of KCl in KCl medium by 140 mM NaCl).

For measuring 22 Na⁺ efflux, after removal of A23187 or nystatin, the cells were loaded with 22 Na⁺ by incubation with 1 μ Ci 22 NaCl/ml loading medium (see Table I) at 37°C for 30 min (22 NaCl, specific activity 100–

1000 mCi/mg Na⁺, Amersham). Extracellular ²²Na⁺ was removed by washing the cells in NaCl medium.

 Mg^{2+} efflux

Mg²⁺ efflux was measured by reincubating a 10% suspension of Mg²⁺-loaded cells at 37°C in Mg²⁺-free NaCl medium (140 mM NaCl, 50 mM sucrose, 5 mM glucose, 30 mM Hepes/Tris, pH 7.4). At the beginning of reincubation and after different times, as indicated, 0.5-ml aliquots of the cell suspension were centrifuged for 1 min at $10\,000 \times g$. For Mg²⁺ determination, 100 μ l supernatant was diluted with 1 ml 10% TCA/0.175% LaCl₃ and Mg²⁺ was measured by atomic absorption spectrophotometry (Philips, SP9). In some experiments Mg²⁺ efflux was determined by the decrease of cellular Mg²⁺ content (see below).

Na + efflux

Na⁺ efflux was measured by the increase of ²²Na⁺ activity in the medium and by the decrease of ²²Na⁺ in the cells. ²²Na⁺ radioactivity was measured in the cells and in 200-μl aliquots of the supernatants in a γ-spectrometer (Berthold BF 5300). ²²Na⁺ efflux was calculated from the increase of the extracellular ²²Na⁺ activity by means of the specific activity of intracellular Na⁺. An aliquot of the supernatant was taken for determination of hemoglobin by means of the cyanmethemoglobin method [2].

Cellular Mg²⁺ and Na⁺ content

For measuring cellular $\mathrm{Mg^{2^+}}$ or $\mathrm{Na^+}$ contents, the cells were washed twice with 150 mM KCl and hemolysed by adding 750 μl H₂O. 50 μl of the hemolysate were taken for determination of hemoglobin, the rest was deproteinized by addition of 50 μl 75% TCA and centrifuged. $\mathrm{Mg^{2^+}}$ content was measured by atomic absorption spectrophotometry after dilution with 10% TCA/0.175% LaCl₃. $\mathrm{Na^+}$ content was measured by flame photometry (KLiNa-Flame, Beckman). Cellular $\mathrm{Mg^{2^+}}$ content was also taken to correct $\mathrm{Mg^{2^+}}$ efflux for hemolysis.

ATP content

ATP content of Mg²⁺-loaded erythrocytes was determined enzymatically in an optical test by means of phosphoglycerate phosphokinase and glyceraldehydephosphate dehydrogenase according to the instructions of the manufacturer (Sigma, procedure No. 336-UV).

Preparation of membranes

Preparation of erythrocyte membranes was performed according to Hanahan and Ekholm [3]. Briefly, 0.4 mg/ml saponin was added to a 10% erythrocyte suspension in 150 mM NaCl, 3 mM L-histidine (pH 7.5) at 4°C, then placed at room temperature for 15 min.

Thereafter the sample was cooled and 1 vol. of the hemolysate was washed four times at 4°C with 6 vol. of 150 mM NaCl, 3 mM L-histidine (pH 7.5).

ATPase assay

ATPase activity was measured at 37 °C according to Foder and Scharff [4]. The assay medium contained 80 mM NaCl, 80 mM L-histidine (pH 7.2), 1 mM ATP, 1 or 11 mM MgCl₂, 60 mM KCl, 1 mM EGTA, 1 mM G-strophanthin, 0.5 mM quinidine or 0.5 mM imipramine, as indicated in Table II, 2.3 mM phospho*enol*-pyruvate, 0.45 mM NADH, 90 μg/ml pyruvate kinase/lactate dehydrogenase (3:1, Boehringer), and approximately 0.5 mg membrane protein/ml. Protein was determined according to Lowry et al. [5].

Results and Discussion

Role of Na + in Mg2+ efflux

The high rate of Na⁺-dependent Mg²⁺ efflux from rat erythrocytes offers the opportunity to measure the stoichiometric relationship between Mg²⁺ efflux and Na⁺ uptake. Since quinidine is a strong inhibitor of Na⁺-dependent Mg²⁺ efflux [6,7], the reduction of intracellular Mg²⁺ and the increase of intracellular Na⁺ were measured in the absence and presence of 0.5 mM quinidine.

Additional tests were run with 1 mM strophanthin. From Fig. 1 it can be seen that the molar ratio of strophanthin-insensitive, quinidine-sensitive Na⁺ uptake/Mg²⁺ efflux amounted to 2, indicating electroneutral Na⁺/Mg²⁺ antiport as was found for Na⁺/Mg²⁺ antiport in chicken erythrocytes [2]. This conclusion relies on there being no significant other Na⁺ influx than the Mg²⁺-dependent one under these experimental conditions. A ratio of 3 Na⁺: 1 Mg²⁺ was reported for Na⁺/Mg²⁺ antiport of human erythrocytes [8].

The effect of $[Na^+]_0$ in the activation of Na^+/Mg^{2+} antiport was specific. LiCl (Fig. 2), choline Cl [7] and KCl (not shown) could not substitute for NaCl. The same Na^+ specificity was already found for the Na^+/Mg^{2+} antiport from chicken erythrocytes [2]. From the values of Fig. 2 the kinetic properties of $[Na^+]_0$ in net Mg^{2+} efflux can be derived. Fig. 3 shows that $[Na^+]_0$ operates in net Mg^{2+} efflux by Michaelis-Menten kinetics, K_m amounting to 62 mM. For comparison, in chicken erythrocytes, the corresponding K_m amounted to 25 mM [9]. Thus, both Na^+/Mg^{2+} exchangers did not express cooperativity with respect to $[Na^+]_0$, as may be expected for a coupled $2Na^+/1Mg^{2+}$ antiport. Further experiments are needed for clarification.

To characterize the driving force of Na⁺/Mg²⁺ antiport, we measured Mg²⁺ efflux in the presence of 0.5 mM PCMBS, which rapidly increased the intracellular

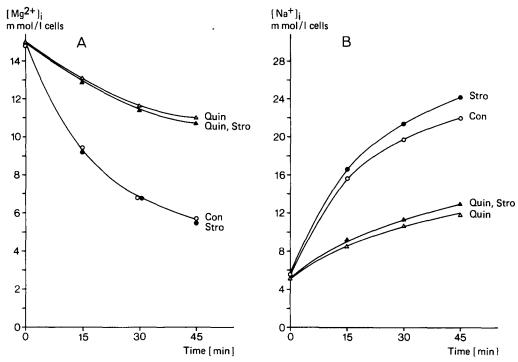


Fig. 1. Mg²⁺ efflux (A) and simultaneous Na⁺ uptake (B) from Mg²⁺-loaded rat erythrocytes. Con, control; Stro, 1 mM strophanthin; Quin, 0.5 mM quinidine were added during measurement of Mg²⁺ efflux and Na⁺ uptake. Mean of three experiments.

 Na^+ concentration and thus reduced the extracellular/intracellular Na^+ gradient. Under these conditions, Mg^{2^+} efflux was inhibited (Fig. 4). From the measured $[Na^+]_i$, the $[Na^+]_0/[Na^+]_i$ gradients were calculated ($[Na^+]_0 = 140$ mM) and from the time course of intracellular Mg^{2^+} content, the rate of Mg^{2^+} efflux was calculated. Both parameters were plotted in Fig. 5. From Fig. 5 it may be concluded that the Na^+ gradient may be a driving force for Mg^{2^+} efflux.

To investigate the role of [Na⁺]_i in Na⁺/Mg²⁺ antiport, we measured ²²Na⁺ efflux from rat erythrocytes either unloaded or loaded with Na⁺, or with Mg²⁺ or with Na⁺ plus Mg²⁺. As shown in Table I, in unloaded cells, there was a strophanthin-insensitive

indicating ²²Na⁺/Na⁺ exchange, which was inhibited by amiloride and quinidine. The rate of strophantin-insensitive ²²Na⁺/Na⁺ exchange was increased in Na⁺-loaded cells ([Na⁺]_i = 60 mmol/l cells) in the absence of net Mg²⁺ efflux. In Mg²⁺-loaded (Na⁺-unloaded) cells, which quickly exchanged intracellular Mg²⁺ for extracellular Na⁺, [Na⁺]_i increased rapidly (see also Fig. 1B). Probably by the increased [Na⁺]_i, ²²Na⁺/Na⁺ exchange was also increased. In (Na⁺+ Mg²⁺)-loaded cells, the rate of net Mg²⁺ efflux (Na⁺/Mg²⁺ antiport) was reduced. Simultaneously, the efflux of ²²Na⁺ was increased. The increase in ²²Na⁺ efflux by additional Mg²⁺-loading amounted to 7.2 mmol/l cells per 15 min

²²Na⁺ efflux at constant [Na⁺]_i of 5 mmol/l cells,

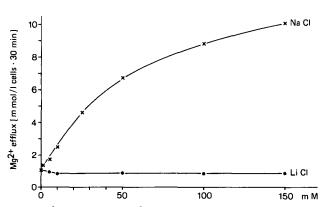


Fig. 2. Mg²⁺ efflux from Mg²⁺-loaded rat erythrocytes in NaCl and LiCl media. Media with different NaCl and LiCl concentrations were used. NaCl and LiCl were isoosmotically substituted by sucrose.

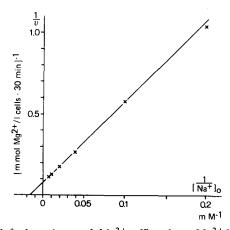
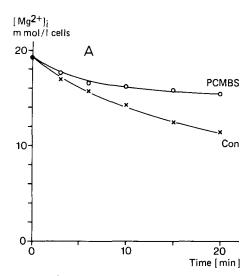



Fig. 3. Na⁺ dependency of Mg²⁺ efflux from Mg²⁺-loaded rat erythrocytes. Lineweaver-Burk plot of the values from Fig. 2.

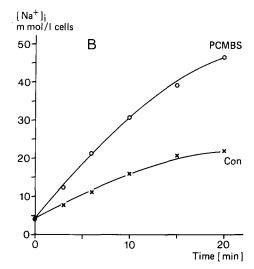


Fig. 4. Mg²⁺ efflux (A) and Na⁺ uptake (B) of Mg²⁺-loaded rat erythrocytes in the presence of 0.5 mM PCMBS.

(calculated from Table I), whereas the reduction in net Mg²⁺ efflux by additional Na⁺-loading amounted only to 2.5 mmol/l cells per 15 min (calculated from Table I). This result might indicate that intracellular Na⁺ can be exchanged for extracellular Na⁺ via the Na⁺/Mg²⁺ antiport system. Such a mechanism can explain the reduction of net Mg²⁺ efflux by increased [Na⁺]_i. However, part of ²²Na efflux in (Na⁺+ Mg²⁺)-loaded cells must be produced by a separate strophanthin-insensitive ²²Na⁺/Na⁺ exchange system which is also operating in Mg²⁺-unloaded cells.

In experiments with Na⁺-loaded human erythrocytes, Lüdi and Schatzmann [10] also found inhibition of net ${}^{4}Mg^{2+}$ efflux by increased $[Na^{+}]_{i}$. In their experiments, the inhibition was caused by reduction of V_{max} at unchanged K_{m} for $[Na^{+}]_{i}$ and $[Mg^{2+}]_{i}$, indicating no competition of intracellular Na⁺ and Mg²⁺. To clarify the interaction of Na⁺ efflux and net Mg²⁺ efflux, we measured net Mg²⁺ efflux from rat erythrocytes loaded with different Na⁺ and Mg²⁺ concentrations. As shown by Dixon plot in Fig. 6, intracellular Na⁺ inhibited net Mg²⁺ efflux competitively, K_{i} amounted to 15 mmol/l cells. This result completes the ${}^{22}Na^{+}$ efflux experiment

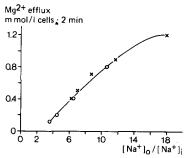


Fig. 5. Mg^{2+} efflux as a function of $[Na^+]_0/[Na^+]_i$ gradient. Values were taken from Fig. 4. $[Na^+]_0 = 140$ mM. \times , values from control; \odot , values from the experiment with PCMBS at various times.

indicating that $^{22}Na^+$ efflux is partly performed by the Na^+/Mg^{2+} antiport. Thus, at increased $[Na^+]_i$ net Mg^{2+} efflux was reduced.

Role of
$$Mg^{2+}$$
 in Mg^{2+} efflux

To test whether the Mg²⁺ gradient is an additional driving force, Mg²⁺ efflux was measured at increasing [Mg²⁺]₀ and thus at changed [Mg²⁺]₁/[Mg²⁺]₀ gradi-

TABLE I

22Na + efflux and net Mg2+ efflux from rat erythrocytes

Loading a	Inhibitor ^b	Efflux (mmol/l cells per 15 min)	
		²² Na ⁺ efflux	Net Mg ²⁺ efflux
Unloaded	_	1.54	0
	amiloride	0.56	0
	quinidine	0.77	0
Na+-loaded	_	14.7	0
	amiloride	1.95	0
	quinidine	1.24	0
Mg ²⁺ -loaded	_	7.0	4.0
	amiloride	1.66	1.6
	quinidine	1.03	1.0
$(Na^+ + Mg^{2+})-$	_	21.9	1.5
loaded	amiloride	6.79	0.7
	quinidine	5.96	0.6

^a Unloaded cells, loading medium with 0.5 mM Mg²⁺ and 10 mM Na⁺, Na⁺-loaded cells, loading medium with 0.5 mM Mg²⁺ and 150 mM Na⁺, Mg²⁺-loaded cells, loading medium with 12 mM Mg²⁺ and 10 mM Na⁺, (Na⁺ + Mg²⁺)-loaded cells, loading medium with 12 mM Mg²⁺ and 150 mM Na⁺. Mg²⁺-loading was performed by means of A23187, Na⁺-loading by means of nystatin, and ²²Na⁺-loading by incubation with ²²NaCl. Mean of two experiments

h Amiloride concentration, 1 mM; quinidine concentration, 0.5 mM.

22 Na + efflux and net Mg²⁺ efflux were measured in the presence of 2 mM strophanthin.

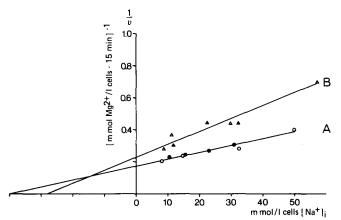


Fig. 6. Dixon plot of net Mg^{2+} efflux. Rat erythrocytes were Mg^{2+} loaded with A23187 at $[Mg^{2+}]_0 = 12$ mM (A) and $[Mg^{2+}]_0 = 6$ mM (B) and additionally Na⁺-loaded by means of nystatin at $[Na^+]_0$ of 10, 50, 100 and 150 mM. Two experiments were plotted with different symbols.

ent. Figs. 7 and 8 show that net Mg^{2+} efflux was increased at higher $[Mg^{2+}]_i$. This result may indicate that net Mg^{2+} efflux is also driven by the Mg^{2+} gradient. From Fig. 8, which was derived from Fig. 7, it can be seen that extracellular Mg^{2+} inhibited net Mg^{2+} efflux competitively, the K_i value amounted to 3 mM. Competitive inhibition of net Mg^{2+} efflux by $[Mg^{2+}]_0$ can be explained by simultaneous uptake of extracellular Mg^{2+} , its rate being increased with increasing $[Mg^{2+}]_0$. Thus, a smaller rate of net Mg^{2+} efflux is obtained when extracellular Mg^{2+} is simultaneously taken up. Uptake of extracellular Mg^{2+} (in competition with extracellular Na^+) during Na^+/Mg^{2+} antiport was demonstrated with $^{28}Mg^{2+}$ [11].

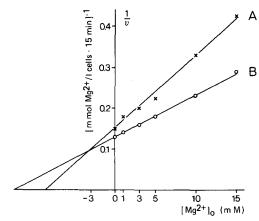


Fig. 8. Dixon plot of net Mg²⁺ efflux from Mg²⁺-loaded rat erythrocytes. Values were taken from Fig. 7.

In an analogous experiment, the Na⁺/Mg²⁺ antiport system of rat erythrocytes took up extracellular Mn²⁺, which may function as an analogue for Mg²⁺ [12].

Role of ATP in Mg2+ efflux

As a next question, we investigated whether net Mg^{2+} efflux is driven by ATP. To test ATP dependence, rat erythrocytes were ATP-depleted by preincubation with 2-deoxyglucose instead of glucose at 37 °C for various times up to 5 h and thereafter loaded with Mg^{2+} . Table II shows that Na^+ -dependent net Mg^{2+} efflux was dependent on intracellular ATP. ATP dependence of Na^+ -dependent Mg^{2+} efflux obeyed Michaelis-Menten kinetics, the K_{m} value for ATP amounted to 0.1 mmol/l cells (not shown). A similar K_{m} value was determined for $\mathrm{Na}^+/\mathrm{Mg}^{2+}$ antiport of human erythrocytes [13].

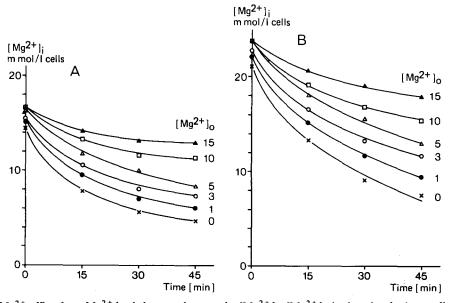


Fig. 7. Inhibition of net Mg²⁺ efflux from Mg²⁺-loaded rat erythrocytes by [Mg²⁺]₀. [Mg²⁺]₀ in the reincubation medium amounted to 0 up to 15 mM as indicated. Rat erythrocytes were loaded with Mg²⁺ in the presence of 6 mM Mg²⁺ (A) and 12 mM Mg²⁺ (B).

TABLE II

Mg2+ efflux and ATP contents of Mg2+-loaded erythrocytes

The erythrocytes were ATP-depleted by incubation with 5 mM 2-deoxyglucose (2-DOG) for various times as well as during Mg²⁺-loading and during reincubation for measurement of Mg²⁺ efflux (in NaCl medium). Control was incubated throughout with glucose. Mean of two experiments.

Preincubation with 2-DOG (h)	Mg ²⁺ efflux (mmol/l cells per 30 min)	ATP content (mmol/l cells)
Control	5.93	0.45
0	4.71	0.18
2	4.20	0.09
3	3.79	0.06
5	2.97	0.04

For further clarifying the role of ATP in Na⁺-dependent net Mg²⁺ efflux, we measured ATPase activity of rat ghosts and the effect of inhibitors which inhibited Na⁺-dependent Mg²⁺ efflux [1,6,8,9]. As shown in Table III, ATPase activity was not inhibited at 0.5 mM quinidine or imipramine which inhibited net Mg²⁺ efflux by 50%.

The lacking inhibition of ATPase by quinidine and imipramine can be explained by the suggestion that both substances bind to the Na⁺/Mg²⁺ antiporter without affecting a phosphorylation-dephosphorylation process. However, amiloride and one of its analogs which inhibited Na⁺/Mg²⁺ antiport with different sensitivity [14] also inhibited strophanthin-insensitive ATPase by the same difference in sensitivity (Table III). From this result it can be concluded that ATP is operating in Na⁺/Mg²⁺ antiport via phosphorylation.

Amiloride and its analog inhibited ATPase activity also at 1 mM Mg²⁺ and ATP. Under this condition the concentration of free Mg²⁺ is low by binding of Mg²⁺

TABLE III

ATPase activity of rat erythrocyte membranes

Stroph, G-strophanthin; Quin, quinidine; Imi, imipramine; Ami, amiloride; E.C.Ami, 5-(N-ethyl-N-4-chlorobenzyl)amiloride.

Additions	ATPase activity a		
(mM)	1 mM Mg+ 1 mM ATP	11 mM Mg + 1 mM ATP	
	3.02	2.95	
Stroph. 1	1.49	1.47	
Stroph. 1 + Quin 0.5	1.47	1.42	
Stroph. 1 + Imi 0.5	1.48	1.40	
Stroph. 1 + Ami 0.03	1.41	1.44	
Stroph. 1 + Ami 0.10	1.20	1.23	
Stroph. 1 + Ami 0.30	0.39	0.42	
Stroph. 1 + E.C.Ami 0.01	1.45	1.40	
Stroph. 1 + E.C.Ami 0.03	0.92	1.15	
Stroph. 1 + E.C.Ami 0.10	0.30	0.36	

a Values in μmol ADP/mg protein per h are the means of two experiments.

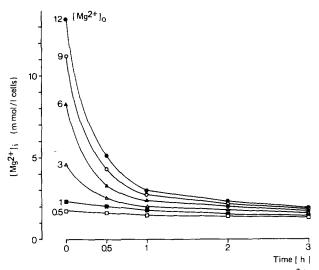


Fig. 9. Mg^{2+} efflux from rat erythrocytes loaded at different $[Mg^{2+}]_0$. The various $[Mg^{2+}]_0$ are indicated at the curves.

to ATP and net Mg²⁺ efflux is not operating at low [Mg²⁺]_i (Ref. 2 and Fig. 9). Therefore, amiloride can inhibit Na⁺/Mg²⁺ antiport via inhibition of ATPase only at high [Mg²⁺]_i, when Na⁺/Mg²⁺ antiport is gated by increased [Mg²⁺]_i (see below).

Asymmetry of net Mg²⁺ efflux

As shown in Fig. 7, net Mg²⁺ efflux can take place when [Mg²⁺]₀ is higher during efflux than the Mg²⁺ concentration during the loading procedure. Probably, net Mg²⁺ efflux can operate uphill, as was also shown for Mg²⁺-loaded human erythrocytes [10]. An uphill Mg²⁺ efflux may be driven by the Na⁺ gradient and possibly by an ATP-dependent process.

Asymmetry of the Mg²⁺ transport system was tested by changing the concentration gradients. [Na⁺]_i was increased by means of PCMBS according to De Mendonca et al. [15], and it was tested wether Mg²⁺ was taken up during incubation of the Na⁺-loaded erythrocytes in KCl medium with 12 mM MgCl₂. Under these experimental conditions, no significant uptake of Mg²⁺ could be measured (data not shown), indicating asymmetry of the Mg²⁺ efflux system as was already found for net Mg²⁺ efflux from human erythrocytes [10,13]. Thus, Na⁺/Mg²⁺ antiport is not a simple exchange system like Na⁺/H⁺ or Na⁺/Ca²⁺ exchange which can operate in both directions.

Gating of net Mg²⁺ efflux by [Mg²⁺]_i

When Mg²⁺-unloaded chicken erythrocytes were incubated, there was no significant Mg²⁺ efflux [2]. To investigate this property, rat erythrocytes were loaded with Mg²⁺ at various extracellular Mg²⁺ concentrations. Thus, different degrees of Mg²⁺-loading were obtained. Fig. 9 shows Na⁺-dependent net Mg²⁺ efflux from differently Mg²⁺-loaded cells after reincubation in

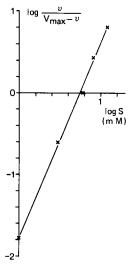


Fig. 10. Hill plot ($\log v/(V_{\rm max}-v)=n_{\rm H}\cdot\log S$) of net Mg²⁺ efflux. For S, the concentrations [Mg²⁺]₀ = [Mg²⁺]_i at equilibrium of Mg²⁺ distribution in the presence of A23187 were taken. v is the rate of Mg²⁺ efflux during the first 6 minutes of reincubation in NaCl medium. $V_{\rm max}$ was obtained by extrapolation.

NaCl medium. There was almost no net Mg^{2+} efflux after Mg^{2+} -loading at the low $[Mg^{2+}]_o$ (unloaded cells). Mg^{2+} efflux from Mg^{2+} -loaded cells stopped when the Mg^{2+} content of unloaded cells was reached. The same result was obtained with chicken erythrocytes, loaded with Mg^{2+} under similar conditions [2]. These results indicate that net Mg^{2+} efflux takes place only when $[Mg^{2+}]_i$ is increased.

When the rates of net Mg^{2+} efflux from this experiment were plotted according to Hill as the function log $v/(V_{\mathrm{max}} - v) = n_{\mathrm{H}} \cdot \log [\mathrm{Mg}^{2+}]_{\mathrm{i}}$, a Hill coefficient (n_{H}) of 2.4 was obtained (Fig. 10). The same cooperative effect of $[\mathrm{Mg}^{2+}]_{\mathrm{i}}$ on net Mg^{2+} efflux and the same value of $n_{\mathrm{H}} = 2.4$ was obtained with human erythrocytes [10].

From this result it can be suggested that at least 3 Mg²⁺ are simultaneously needed for Na⁺/Mg²⁺ anti-

port from rat erythrocytes. This might indicate that 1 Mg²⁺ is exchanged for 2 Na⁺, the other 2 Mg²⁺ are simultaneously needed to activate the Na⁺/Mg²⁺ antiport, e.g., by gating. This process (eventually in cooperation with ATP) may be responsible for the asymmetry of Na⁺/Mg²⁺ antiport.

When [Mg²⁺]_i is reduced to the physiological value, Na⁺/Mg²⁺ antiport is no longer gated, and thus net Mg²⁺ efflux stops when the physiological [Mg²⁺]_i is reached (Fig. 9). Thus, the increased [Mg²⁺]_i may have two functions: It may gate net Mg²⁺ efflux and it may work as an additional driving force.

References

- 1 Günther, T. and Vormann, J. (1989) FEBS Lett. 250, 633-637.
- 2 Günther, T., Vormann, J. and Förster, R. (1984) Biochem. Biophys. Res. Commun. 119, 124-131.
- 3 Hanahan, D.J. and Ekholm, J.E. (1978) Arch. Biochem. Biophys. 187, 170-179.
- 4 Foder, B. and Scharff, O. (1981) Biochim. Biophys. Acta 649, 367-376.
- 5 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- 6 Feray, J.C. and Garay, R. (1986) Biochim. Biophys. Acta 856, 76-84
- 7 Günther, T. and Vormann, J. (1989) FEBS Lett. 247, 181-184.
- 8 Feray, J.C. and Garay, R. (1988) Naunyn-Schmiedeberg's Arch. Pharmacol. 338, 332-337.
- 9 Günther, T. and Vormann, J. (1985) Biochem. Biophys. Res. Commun. 130, 430-434.
- 10 Lüdi, H. and Schatzmann, H.J. (1987) J. Physiol. 390, 367-382.
- 11 Günther, T. and Vormann, J. (1987) Biochem. Biophys. Res. Commun. 148, 1069-1074.
- 12 Feray, J.C. and Garay, R. (1987) J. Biol. Chem. 262, 5763-5768.
- 13 Frenkel, E.J., Graziani, M. and Schatzmann, H.J. (1989) J. Physiol. 414, 385-397.
- 14 Günther, T., Vormann, J., Cragoe, Jr., E.J. and Höllriegl, V. (1989) Magnesium-Bull, 11, 103-107.
- 15 De Mendonca, M., Grichois, M.L., Garay, R.P., Sassard, J., Ben-Ishay, D. and Meyer, P. (1980) Proc. Natl. Acad. Sci. USA 77, 4283-4286.